Тектология (всеобщая организационная наука). Книга - Страница 106


К оглавлению

106

Какие же воздействия способны сразу разрушить достаточное число атомов центральной частички? Шаровая молния появляется после сильного разряда обыкновенной молнии, которая есть не что иное, как могучий поток электронов — β-частиц в электрическом поле. До сих пор разрушение атомов обычных элементов, как азота в опытах Резерфорда, достигалось ударами более массивных α-частиц, кинетическая энергия которых много больше. Но во много раз большее число β-частиц, может, очевидно, заменить эту массивность и, проходя через частичку относительно устойчивой материи, разрушить значительное число атомов, а тем самым лавинообразно развернуть кризис. Тогда, например, понятно и то, почему феномен чаще наблюдается в тропических странах, где грозы сильнее, а также в горных, где обнажение различных минеральных пород ведет к особенному разнообразию состава пыли в воздухе и дает наибольшую вероятность встречи искровой молнии с подходящей частичкой. Молния же «четковидная», очевидно, должна получаться при исключительном составе пыли, когда искровая молния проходит через целый ряд способных к взрыву частичек.

Нет особых оснований предполагать, что взрывающиеся в виде шаровых молний вещества — именно те, которые уже известны в качестве радиоактивных. В химии, например, соединения, довольно быстро разлагающиеся сами по себе при обычных условиях, большей частью не способны к катастрофическим взрывам. Поэтому скорее можно ожидать успеха попыток с элементами, принадлежащими к числу «устойчивых», но утратившими часть этой устойчивости путем, например, значительных и длительных потерь лучистой энергии. Кроме того, возможно, что до сих пор применявшиеся лабораторные воздействия были еще недостаточно сильны, чтобы воспроизвести данное явление.

Успех опытов в таком направлении был бы очень важен. Он проложил бы путь к сравнительно легкому овладению бесконечными запасами внутриатомной энергии, что явится, почти несомненно, основой будущей техники.

Заметим, что и до сих пор самые грандиозные победы человечества над природой — начиная с зажигания большого огня от маленькой искры — достигались применением принципа лавинообразно развертывающихся кризисов.


§ 7. Универсальность понятия кризисов

Мы с самого начала установили, что понятие «кризисов» относительно, и его применение зависит от того, в каких пределах ведется исследование организационной формы. Факт «кризиса» признается тогда, когда в результате наблюдаемого процесса оказывается не та тектологическая форма, какая была до него. Так, если в строении организма задача нашего изучения ограничивается только теми основными чертами, которые остаются неизменными от его детства до старости, то вся жизнь его, все развитие в этом промежутке рассматриваются как один непрерывный процесс, а кризисы принимаются только на обеих его границах — в начале и в конце; если в исследование введена какая-либо черта строения, возникающая или исчезающая между этими пределами, то ее возникновение или исчезновение выступает как особый жизненный кризис.

Проведем эту точку зрения последовательно до конца. Допустим, что у нас имеется вода при 3 °C и что эта ее температура поддерживается с достаточной точностью в течение некоторого времени. Тогда перед нами консервативно-определенный комплекс; его сохранение обусловлено равенством притока и потерь тепловой энергии. Но вот положение меняется, этого равенства больше нет: вода начинает нагреваться, полная дезингрессия тепловых активностей, текущих в двух направлениях, нарушена, сделалась неполной. Формально, мы знаем, это означает кризис; и действительно, наш комплекс из «неподвижного» превратился в изменяющийся, его статика сменилась динамикой.

Остановим теперь процесс изменения температуры реально или даже мысленно (т. е. просто фиксируя известную его фазу); пред нами опять «сохраняющаяся форма», например вода при 4 °C, — и она иная, чем была прежде. Неправильно было бы при этом считать, что она иная только «количественно». Изменения, правда, можно выразить числами: выше температура, немного изменились пространственные измерения, также величина теплоемкости, величина поверхностного натяжения и пр. Но когда все эти коэффициенты меняются неодинаково, и даже в разных направлениях, то ясно, что в целом перед нами структурное преобразование. В самом деле, научно оно и понимается как бесчисленные перемены взаимного положения молекул, размаха и скорости их колебаний и пр.; для воды принимается даже изменение их состава, поскольку вода теперь рассматривается как раствор льда в разных пропорциях при разных температурах. Между прочим, на воде при 4 °C глубокий характер преобразования формы ярко иллюстрируется тем, что объем воды именно тут достигает своего минимума. Но кризисом все равно явится и переход от 3 к 5 °C или к 3,5, к 3,1 °C и т. п.: структура комплекса в каждом случае все-таки иная; он тектологически не тот, что был при 3 °C.

Таким образом, всякое изменение, когда познавательный интерес сосредоточен именно на нем, на различии формы в его начале и конце, должно рассматриваться как особый кризис. Всякая «непрерывность» может быть разбита анализом в бесконечную цепь кризисов.

Например, биолог обычно вводит в свои соображения процесс питания как непрерывный в организме. Но для физиолога-химика это совершенно иначе: моментами кризисов являются хотя бы все превращения белковой молекулы пищи — ее переход в растворенное состояние, ее реакции с переваривающими соками, ее распадение на аминокислоты, образование из их молекул новых белковых соединений, соответствующих структуре организма, их вхождение в состав той или иной клетки, их новые распадения в ходе дезассимиляции… Равным образом колебательные процессы всякого рода, материальные и электромагнитные, могут мыслиться как непрерывности; но в анализе волн каждая из бесчисленных фаз, на которые можно разбить ход волны, может быть тектологически взята как особая форма, так как отличается от предшествующей и последующей соотношениями скорости, ускорения и пр., — сложный ряд количественных различий, в своей комбинации образующих «качественное».

106