Такова, например, связь той же атмосферы с «гидросферой» — водной частью оболочки Земли. Между ними существует целый ряд конъюгационных связей: кругооборот воды — пара, растворение газов воздуха в воде, обмен тепловой, электрический и проч. Обе стороны и здесь регулируют друг друга, взаимно поддерживая свою устойчивость. Так, атмосфера путем дождей, снега, инея и т. д. теряет свою газообразную воду; гидросфера получает ее в виде ручьев, рек, впадающих затем в моря и океаны; но она в свою очередь возвращает ей приблизительно такое же количество воды через испарение. Температурная устойчивость системы поддерживается тем, что непрерывная воздушная оболочка задерживает теплоту гидросферы, как и «литосферы», твердой части земной коры, доставляемую почти всецело лучами Солнца; а гидросфера, обладающая громадной теплоемкостью, образует как бы резервуар, то поглощающий излишки тепловой энергии, когда нагревание усиливается, то отдающий эти излишки воздуху, а через него и литосфере, когда нагревание уменьшается; таким образом, температурные колебания удерживаются в ограниченных пределах около одного основного уровня.
Надо заметить, что теплозадерживающая функция атмосферы в свою очередь регулируется обменом воды с океанами и морями, а частью также — углекислоты с биосферой. Дело в том, что главные составные части воздуха — кислород и азот — обладают весьма малой задерживающей способностью, а водяной пар, которого в воздухе сравнительно очень немного, несколько десятых процента, и углекислота, которой еще меньше, превосходят их в этом отношении в 16 000 раз. Таким образом, регулирование их количества конъюгационными связями между тремя областями есть основное условие, благодаря которому сохраняется устойчивый в среднем температурный их уровень: типичное дополнительное соотношение.
Здесь, таким образом, ясно выступает это соотношение между органическими и неорганическими комплексами, а равно и между одними неорганическими. И оно явилось результатом развития в системе расхождения. Было время, когда атмосфера заключала в себе и всю нынешнюю гидросферу, в виде водяного пара: температура земной коры измерялась сотнями градусов, и вода не могла быть капельно-жидкой. С понижением температуры «вода» и «воздух» разделились; а затем от них обособилась и «жизнь», ведь она по основному составу есть комбинация тех же химических элементов, какие образуют атмосферу и океаны: кислород, водород, азот, углерод с прибавлением еще некоторых имеющихся в виде растворенных соединений также и в морской воде. Сотни миллионов лет, в ряду бесчисленных процессов подбора, развивались дополнительные соотношения между разделившимися, но и сохраняющими связь гигантскими группировками элементов земной оболочки.
Из всего этого очевидно, что с таким же точно основанием, с каким растительное и животное царства тектологически рассматриваются как части одной системы — «жизни», можно жизнь в целом, или «биосферу», и атмосферу рассматривать как части одной, более широкой системы. Дополнительные взаимоотношения существуют одинаково в первом и во втором случае.
Кажущаяся парадоксальность этого вывода зависит от того, что обыденное мышление привыкло отделять непереходимой пропастью жизнь от остальной природы, хотя и жизнь, и неорганическая природа сами на каждом шагу эту пропасть переходят в своих взаимных превращениях. И сами биологи поддерживают этот предрассудок, относя ко всем жизненным формам метафору «борьба за существование», благодаря этому способу выражения, внушается мысль, что сохранение жизни есть нечто принципиально иное, чем сохранение всяких других природных комплексов: первое — результат «борьбы», второе — простая «устойчивость». На самом деле сущность факта одна и та же — подвижное равновесие, и здесь, и там. С этой точки зрения поддержание жизни в определенном масштабе и поддержание атмосферы в определенных количественных соотношениях — явления одного тектологического типа.
Неорганическая природа, которая вообще характеризуется по сравнению с органическим миром большей простотой организационных форм, естественно, дает также и наиболее простые образцы дополнительных соотношений. Вот один из них.
Имеется пересыщенный раствор какой-нибудь соли; в нем идет кристаллизация. Это — процесс разрыва прежней связи, процесс разъединения двух частей данной системы и вместе с тем их расхождения. Он приводит к новой связи обеих частей: раствор не пересыщенный, а только насыщенный, и в соприкосновении с ним — наименьшее число кристаллов с наименьшей поверхностью. Когда это состояние достигнуто, то между обеими «фазами» системы, жидкой и твердой, получается устойчивое обменное соотношение, круговорот растворенного вещества. Кристаллы непрерывно теряют, «дезассимилируют» частицы, растворяемые и таким образом «ассимилируемые» жидкостью; и наоборот, жидкость теряет частицы, осаждающиеся на кристаллах, усвояемые, следовательно, ими; два потока изменений уравновешиваются, и форма всей системы сохраняется. Мало того, при известных условиях она восстанавливается после ее нарушения внешними воздействиями. Предположим, например, что от кристалла механически отбит кусочек. Тогда поверхность обменного взаимодействия обеих фаз возрастает, и оно усиливается. Раствор постепенно разъедает отбитый кусочек, и взамен этого отлагает частицы на кристалле, так что «рана залечивается». Обе стороны как бы сообща регулируют форму своей поверхности соприкосновения.