В механике есть еще ряд законов «сохранения» тех или иных величин и соотношений, например, сохранения центра тяжести, сохранения поверхностей. Все они могут быть сведены к схемам максимум и минимум, специально же к закону наименьшего действия. Но есть один закон «сохранения», господствующий не только над механикой, но и над физикой вообще, и над всеми естественными науками, — принцип сохранения энергии. Он гораздо глубже и шире других, так что отнюдь не может быть всецело сведен к схеме подбора; он, по-видимому, есть современная форма, в которой выражается непрерывность существований всяких активностей-сопротивлений, непрерывность их закономерного действия, другими словами, современная форма причинности. Однако в нем есть одна сторона — именно та, которая казалась до сих пор наиболее загадочной, — получающая иной вид, чем прежде, если мы попытаемся осветить ее принципом подбора. Это — ограничительный закон энтропии, согласно которому превращения энергии вполне обратимы, потому что при всех них количество тепловой энергии возрастает за счет иных ее форм.
Пусть какое-нибудь твердое тело получает толчок в определенном направлении от другого тела. Из числа возникающих, первоначально разнообразных движений элементов системы огромное большинство устраняется подбором, а именно подавляется внешними и внутренними для данной системы сопротивлениями. Но какова дальнейшая судьба этих устраненных подбором движений? Они не переходят прямо в перемещение тела, но также, конечно, не просто «уничтожаются». Их судьба зависит от строения самой системы.
Тела упругие организованы таким образом, что при деформации немедленно вновь восстанавливают свою форму, т. е. их частицы проходят обратно путь деформирующего перемещения. Следовательно, те движения, которые не становятся составной частью траектории всего тела, отражаются превосходящими их сопротивлениями по строго обратному пути и возвращаются к своему исходному пункту, к точке удара. Идя навстречу действию толчка, они его усиливают собой, так как увеличивают разницу скоростей между сталкивающимися частицами обоих тел. Они, значит, не теряются для механического действия толчка, его кинетическая энергия, только что уменьшенная на их величину, вновь на нее возрастает.
В телах неупругих возникающая деформация остается, взаимные соотношения частиц оказываются изменены, и потому их отброшенные, но вошедшие в траекторию движения не возвращаются к пункту толчка по прежним путям, а беспорядочно рассеиваются в массе тела как молекулярные вибрации. Но это по современным воззрениям и есть тепловая форма энергии. Перед нами энтропический процесс: часть «живой силы» толчка теряется.
При абсолютно упругих телах такой потери не было бы, и передача движения от одного из них другому произошла бы без возрастания энтропии. Но абсолютно упругих тел не бывает, и потому всякая подобная передача движения, представляющая один из простейших случаев превращений энергии, сопровождается энтропической растратой, ничтожной для тел весьма упругих, гораздо более значительной — для малоупругих.
Здесь, таким образом, энтропический процесс неизбежен как результат подбора возникающих движений: при подборе во всех его формах и на всех ступенях происходит расточение энергии, переход к ее ниже организованным видам, и энтропия — частный случай такого расточения. Она есть как бы цена подбора, который совершается при переходе энергии от одной системы к другой.
Насколько значительна эта цена, это расточение энергии? Все зависит, очевидно, от того, как протекает процесс подбора. Исследуем, например, случай толчка, получаемого неупругим телом. Для этого, пользуясь обычным аналитическим приемом, мысленно разделим процесс толчка на стадии минимальной или «бесконечно малой» продолжительности и будем их рассматривать одну за другой. Мы найдем, что соответственные им моменты подбора протекают неодинаково. В первом моменте подбора, соответствующем самой начальной фазе толчка, энтропическая растрата должна оказаться наибольшей; среди различнейших минимальных перемещений первого момента удерживается лишь то, которое направлено по линии наименьшего сопротивления, т. е. растрачивается почти вся отданная в этой фазе толчка кинетическая энергия. Но в следующий момент картина несколько иная: так как уже началось поступательное движение тела, то продолжающееся действие толчка встречает со стороны всей его молекулярной структуры соответственно меньшее сопротивление; поэтому беспорядочно-разнообразное колебание, зависящее от второй фазы толчка, в такой же мере слабее; между тем перемещение по траектории, которое удерживается подбором, тут двойное — продолжение первого, предыдущего, перемещения плюс новое. Следовательно, энтропическая потеря относительно уменьшается. В следующий момент она по таким же причинам уменьшается еще более и т. д., до самого окончания толчка. В последний момент действия толчка новая возникающая потеря бесконечно мала, т. е. передача энергии за этот момент происходит без энтропии.
Представляя удар не как мгновенный акт, а как сложный реальный процесс, чем он является на самом деле, мы видим, что по схеме подбора течение этого процесса неравномерно и неоднородно: в то время как энтропическое превращение энергии при нем уменьшается от максимума до нуля, передача собственно механической активности соответственно возрастает. В действительности иначе и быть не может. Сначала энергия толчка имеет дело с молекулярными сопротивлениями и связями тела и растрачивается на их изменение — на деформацию и нагревание; по мере того как эта сторона работы толчка исчерпывается, его энергия все полнее переходит в перемещение тела. Оттого если маленькое тело ударяется о покоящееся большое, то передача кинетической энергии ничтожна и наибольшая часть ее теряется; например, если второе тело в 1000 раз больше первого, то теряется 999/1000 и вся система обоих тел вместе сохраняет в виде механического движения меньше 1/1000 доли прежней кинетической энергии первого тела; напротив, если соотношение величин обратное, то теряется меньше 1/1000 доли, сохраняется больше 999/1000.